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(Non)Parametric Statistical Tests
Parametric vs. Non-parametric tests
Parametric:

based on parametric families of probability distributions

rely on assumptions that the data are drawn from a given prob. distribution (e.g. the
underlying population is normally distributed)

Non-parametric:

distribution-free test statistics

do not rely on assumptions about the data's prob. distribution
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(Non)Parametric Statistical Tests
Parametric vs. Non-parametric tests
When should I use a parametric test?

When should I use a non-parametric test?

scale/level of measurement ?

non-metric (nominal, ordinal) vs. metric (interval, ratio) data

the distribution of the data ?

normally distributed vs. non-normally distributed
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... parametric test statistics if ...

the level of measurement is metric (interval or
ratio),

the population is normally distributed,

the sample size is large

... non-parametric test statistics if ...

the level of measurement is non-metric
(nominal or ordinal),

the population is non-normally distributed,

the sample size is small

(Non)Parametric Statistical Tests
Parametric vs. Non-parametric tests
We mostly use ...
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(Non)Parametric Statistical Tests
As the appropriate test statistic depends on the data's level of measure, its (assumed)
distribution, as well as its sample size, ...

... it makes sense to always get an overview about the data first,

... and — if you want to use parametric test statistics, in particular —, to test for normality
of your data
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Testing for Normality
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## [1] 0.3989423

x <- seq(-4, 4, length=100)
y <- dnorm(x)
plot(x, y)

Testing for Normality
Some useful functions for distributions in R
For normal distributions:

dnorm(x=0, mean=0, sd=1)    # prob. density function (pdf
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## [1] 0.9772499

y <- pnorm(x)    
plot(x, y)

Testing for Normality
Some useful functions for distributions in R
pnorm(74, mean=70, sd=2)    # cumulative density function
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Testing for Normality
Some useful functions for distributions in R
# e.g. find the Z-score of the 99th quantile of the standard normal distribution
qnorm(.99, mean=0, sd=1)    # (inverse cumulative density function (cdf))

## [1] 2.326348

rnorm(5, mean = 10, sd = 2)    # generates normally distributed random variables

## [1] 10.858815  7.864668  6.219411 10.179098  7.397888

See here, for example.

Similarly, these functions are available for most other popular probability distributions.
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Testing for Normality
'Descriptive': Histograms and normal density
hist(data$PCT_WOMEN_ON_BOARD, prob = TRUE, breaks = 20)
curve(dnorm(x, 
            mean = mean(data$PCT_WOMEN_ON_BOARD, na.rm = TRUE),
            sd = sd(data$PCT_WOMEN_ON_BOARD, na.rm = TRUE)),
      col = ubluelight, lwd = 2,
      add = TRUE, yaxt="n")
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Testing for Normality
'Descriptive': QQ plots
qqnorm(data$PCT_WOMEN_ON_BOARD, frame = FALSE)
qqline(data$PCT_WOMEN_ON_BOARD, col = ubluelight, lwd = 2)
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Testing for Normality
Kolmogorov-Smirnov Goodness-of-Fit Test

tests whether the empirical distribution function of the sample and the cumulative distribution function of some
reference distribution are equal in location and shape

nature of independent variable(s): no independent variables, 1 population

scale of dependent variable: ordinal or interval

hypothesis:

:  for all values of 

:  or  or 

H0 F(x) = F0(x) x

H1 F(x) ≠ F0(x) F(x) > F0(x) F(x) < F0(x)
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Testing for Normality
Kolmogorov-Smirnov Goodness-of-Fit Test — Example

Test whether the variable CHG_PCT_YTD is normally distributed

ks.test(data$PCT_WOMEN_ON_BOARD,
        "pnorm", 
        mean = mean(data$PCT_WOMEN_ON_BOARD, na.rm=TRUE),
        sd = sd(data$PCT_WOMEN_ON_BOARD, na.rm=TRUE))

## 
##     One-sample Kolmogorov-Smirnov test
## 
## data:  data$PCT_WOMEN_ON_BOARD
## D = 0.075887, p-value = 0.006166
## alternative hypothesis: two-sided
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Testing for Normality
Shapiro-Wilk Test

tests whether a sample  is drawn from a normally distributed population

nature of independent variable(s): no independent variables, 1 population

scale of dependent variable: ordinal or interval

hypothesis:

:  for all values of 

:  or  or 

x1, . . . , xn

H0 F(x) = F0(x) x

H1 F(x) ≠ F0(x) F(x) > F0(x) F(x) < F0(x)
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Testing for Normality
Shapiro-Wilk Test — Example

Test whether the variable CHG_PCT_YTD is normally distributed

shapiro.test(data$CHG_NET_YTD)

## 
##     Shapiro-Wilk normality test
## 
## data:  data$CHG_NET_YTD
## W = 0.37452, p-value < 2.2e-16
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One-Sample Test Statistics
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One-Sample Test Statistics
 Goodness of Fit Test

tests whether the observed proportions for a categorical variable of a single population differ significantly from
hypothesized (expected) proportions

nature of independent variable(s): no independent variables, 1 population

scale of dependent variable: categorical/nominal

hypothesis:

: 

:  ('The observed proportions (  ) differ from hypothesized (expected) proportions (  ).')

χ2

H0 pi = pi,0∀i ∈ [1, . . . , k]

H1 pi ≠ pi,0∀i ∈ [1, . . . , k] pi,0 pi
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One-Sample Test Statistics
 Goodness of Fit Test — Example
We use the data from sp500_data.csv.

Test whether the proportion of companies in the S&P 500 with a female CEO is different from 20%.

females <- sum(data$FEMALE_CEO_OR_EQUIVALENT, na.rm=TRUE)
total <- sum(!is.na(data$FEMALE_CEO_OR_EQUIVALENT))

x <- c(total - females, females)
x

## [1] 479  23

chisq.test(x, p = c(0.8, 0.2))

## 
##     Chi-squared test for given probabilities
## 
## data:  x
## X-squared = 74.586, df = 1, p-value < 2.2e-16

χ2
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One-Sample Test Statistics
One-Sample Wilcoxon Signed Rank Test

tests whether the population from which the data were sampled is symmetric or not about the default value

nature of independent variable(s): no independent variables, 1 population

scale of dependent variable: ordinal or interval
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One-Sample Test Statistics
One-Sample Wilcoxon Signed Rank Test — Example

Test whether the median yearly net change in prices is different from 0. I.e., whether the population from which the data were
sampled is centered around 0.

wilcox.test(data$CHG_NET_YTD, mu = 0)

## 
##     Wilcoxon signed rank test with continuity correction
## 
## data:  data$CHG_NET_YTD
## V = 115647, p-value < 2.2e-16
## alternative hypothesis: true location is not equal to 0
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One-Sample Test Statistics
One-Sample -Test

evaluates whether the sample mean (  ) of a test variable significantly differs from a constant test value 

nature of independent variable(s): no independent variables, 1 population

scale of dependent variable: interval or ratio

hypothesis:

: 

:  or  or  ('The sample mean  significantly differs from the constant test value .')

assumptions:

the observations in the sample are independent of each other

the observations follow a normal distribution with mean  and variance 

t

μ μ0

H0 μ = μ0

H1 μ ≠ μ0 μ > μ0 μ < μ0 μ μ0

μ σ2
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One-Sample Test Statistics
One-Sample -Test — Example

Test whether the mean yearly net change in prices is different from 0.

summary(data$CHG_NET_YTD)

##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max.     NA's 
## -146.950    5.395   15.170   28.076   33.490 1215.650        6

t.test(data$CHG_NET_YTD, mu = 0)

## 
##     One Sample t-test
## 
## data:  data$CHG_NET_YTD
## t = 9.1499, df = 498, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  22.04771 34.10538
## sample estimates:
## mean of x 
##  28.07655

But: Do our assumptions hold? Is the data normally distributed?

t
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Unpaired Two-Sample Test Statistics
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Unpaired Two-Sample Test Statistics
Pearson’s  Test for  c tables

tests whether there is a relationship between two categorical variables (or tests whether or not the  samples are
homogeneous regarding the proportion of observations in each of the  categories;  test for homogeneity)

nature of independent variable(s): 1 independent variables with 2 levels (independent groups)

scale of dependent variable: categorical/nominal

hypothesis:

:  for all cells

:  for at least one cell

χ2 r×
r

c χ2

H0 Oij = Eij

H1 Oij ≠ Eij
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Unpaired Two-Sample Test Statistics
Pearson’s  Test for  c tables — Example

Test whether there is a relationship between the company's industry group and the percentage of women on its board.

chisq.test(data$INDUSTRY_GROUP, data$PCT_WOMEN_ON_BOARD)

## 
##     Pearson's Chi-squared test
## 
## data:  data$INDUSTRY_GROUP and data$PCT_WOMEN_ON_BOARD
## X-squared = 2532.7, df = 2419, p-value = 0.05262

χ2 r×
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Unpaired Two-Sample Test Statistics
Wilcoxon Rank Sum Test (Mann-Whitney -test)

tests whether two independent samples are drawn from the same population

nature of independent variable(s): 1 independent variables with 2 levels (independent groups)

scale of dependent variable: ordinal or interval

U
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Unpaired Two-Sample Test Statistics
Wilcoxon Rank Sum Test — Example

Test whether the percentage of women on the board of financial companies are drawn from the same distribution as the pct.
of women on board of industrial companies.

wilcox.test(PCT_WOMEN_ON_BOARD ~ INDUSTRY_SECTOR,
            data = data %>% filter(INDUSTRY_SECTOR == "Financial" | INDUSTRY_SECTOR == "Industrial"))

## 
##     Wilcoxon rank sum test with continuity correction
## 
## data:  PCT_WOMEN_ON_BOARD by INDUSTRY_SECTOR
## W = 3877, p-value = 0.04192
## alternative hypothesis: true location shift is not equal to 0
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Unpaired Two-Sample Test Statistics
Kolmogorov-Smirnov Test

tests whether two samples are drawn from the same distribution, or, more precisely, whether two independent
empirical distributions are equal in location and shape

nature of independent variable(s): 1 independent variables with 2 levels (independent groups)

scale of dependent variable: ordinal or interval
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Unpaired Two-Sample Test Statistics
Kolmogorov-Smirnov Test

Test whether the percentage of women on the board of financial companies are drawn from the same distribution as the pct.
of women on board of industrial companies or — more precisely — whether the the empirical distributions are equal in
location and shape.

financial <- data %>% filter(INDUSTRY_SECTOR == "Financial") %>% .$PCT_WOMEN_ON_BOARD
industrial <- data %>% filter(INDUSTRY_SECTOR == "Industrial") %>% .$PCT_WOMEN_ON_BOARD

ks.test(financial, industrial)

## 
##     Two-sample Kolmogorov-Smirnov test
## 
## data:  financial and industrial
## D = 0.23232, p-value = 0.02783
## alternative hypothesis: two-sided
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Unpaired Two-Sample Test Statistics
Independent Sample -Test

evaluates whether the sample means (  and  ) of two independent variables significantly differ

nature of independent variable(s): 1 independent variables with 2 levels (independent groups)

scale of dependent variable: interval or ratio

hypothesis:

: 

:  or  or 

assumptions:

all observations from both groups are independent of each other

the observations follow a normal distribution with mean  and variance 

the two independent samples have the same standard deviation, otherwise Welch’s approximation should be applied

t

μ1 μ2

H0 μ1 = μ2

H1 μ1 ≠ μ2 μ1 > μ2 μ1 < μ2

μ σ2
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Unpaired Two-Sample Test Statistics
Independent Sample -Test — Example

Test whether the mean percentage of woman is different in financial companies compared to industrial companies.

financial <- data %>% filter(INDUSTRY_SECTOR == "Financial") %>% .$PCT_WOMEN_ON_BOARD
industrial <- data %>% filter(INDUSTRY_SECTOR == "Industrial") %>% .$PCT_WOMEN_ON_BOARD

t.test(financial, industrial, var.equal=TRUE)

## 
##     Two Sample t-test
## 
## data:  financial and industrial
## t = 2.0421, df = 163, p-value = 0.04275
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.07825703 4.65716398
## sample estimates:
## mean of x mean of y 
##  25.40932  23.04161

t
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Unpaired Two-Sample Test Statistics
Independent Sample -Test — Example

What if the two samples have different s?

t.test(financial, industrial, var.equal=FALSE)

## 
##     Welch Two Sample t-test
## 
## data:  financial and industrial
## t = 2.0669, df = 145.08, p-value = 0.04052
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.1036396 4.6317814
## sample estimates:
## mean of x mean of y 
##  25.40932  23.04161

t

σ
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Paired Two-Sample Test Statistics
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Paired Two-Sample Test Statistics
Wilcoxon Signed Rank Test

tests whether two dependent samples represent two different populations or whether the two dependent samples are
drawn from the same population

nature of independent variable(s): 1 independent variables with 2 levels (dependent groups)

scale of dependent variable: ordinal or interval

assumptions:

the data are paired and come from the same population

each pair is chosen randomly and independently
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Paired Two-Sample Test Statistics
Wilcoxon Signed Rank Test — Example

Test whether the percentage of women on the board of financial companies in 2019 are drawn from the same distribution as
the pct. of women on board of financial companies in 2014.

wilcox.test()
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Paired Two-Sample Test Statistics
Dependent -Test for Paired Samples

evaluates whether the sample means (  and  ) of two independent samples differ significantly

nature of independent variable(s): 1 independent variables with 2 levels (dependent groups)

scale of dependent variable: interval or ratio

hypothesis:

: 

:  or  or 

assumptions:

the observations follow a normal distribution with mean  and variance 

the two samples have the same standard deviation (homogeneity of variance)

t

μ1 μ2

H0 μ = μ0

H1 μ ≠ μ0 μ > μ0 μ < μ0

μ σ2
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Paired Two-Sample Test Statistics
Dependent -Test for Paired Samples

Test whether the mean percentage of women on the board of financial companies in 2019 is different to the mean pct. of
women on board of financial companies in 2014.

t.test()

t
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-Sample Generalizations: more than 2 groupsn
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-Sample Generalizations
Kruskal-Wallis Test

tests whether two or more independent samples originate from the same distribution, i.e., extends the Mann-
Whitney -test when there are more than two groups (for two groups, both statistics are identical)

nature of independent variable(s): 1 independent variables with two or more levels (independent groups)

scale of dependent variable: ordinal or interval

n

U
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-Sample Generalizations
Kruskal-Wallis Test — Example

Test whether the percentage of women on the board of companies from different industry sectors are drawn from the same
distribution.

kruskal.test(PCT_WOMEN_ON_BOARD ~ INDUSTRY_SECTOR,
            data = data)

## 
##     Kruskal-Wallis rank sum test
## 
## data:  PCT_WOMEN_ON_BOARD by INDUSTRY_SECTOR
## Kruskal-Wallis chi-squared = 9.3157, df = 8, p-value = 0.3164

n
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-Sample Generalizations
Jonkheere-Terpstra Test (Jonkheere’s trend test)

tests whether three or more independent samples originate from the same distribution, (just as the Kruskal-Wallis
test) but with an ordered alternative hypothesis

nature of independent variable(s): 1 independent variables with three or more levels (independent groups)

scale of dependent variable: ordinal or interval

hypothesis:

: 

: 

assumptions and limitations:

all observations from all  groups are independent of each other

hypothesized ordering of groups’ rank-sums required

n

H0 θ1 = θ2 =. . . = θk

H1 θ1 ≤ θ2 ≤. . . ≤ θk

k
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-Sample Generalizations
Jonkheere-Terpstra Test — Example

Test whether the percentage of women on the board of companies from financial companies is larger than the percentage in
industrial companies, which is then larger than the respective percentage in basic materials companies.

## 
##     Jonckheere-Terpstra test
## 
## data:  
## JT = 4237, p-value = 0.1625
## alternative hypothesis: two.sided

library(clinfun)
groups <- data %>% filter(INDUSTRY_SECTOR == "Financial" |
                                     INDUSTRY_SECTOR == "Industrial" |
                                     INDUSTRY_SECTOR == "Basic Materials")
groups$INDUSTRY_SECTOR <- factor(groups$INDUSTRY_SECTOR, levels = c("Financial", "Industrial", "Basic Materials"), ordere
jonckheere.test(groups$PCT_WOMEN_ON_BOARD, 
                groups$INDUSTRY_SECTOR)

n
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Permutation Tests
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Ten subjects have been randomly assigned to one of
two treatment conditions (A or B) and an outcome
variable (score) has been recorded.

Treatment A Treatment B

40 57

57 64

45 55

55 62

58 65

First, let's use a parametric approach to compare
Treatment A and Treatment B.  -test:

assume normal distributions, independent groups,
and equal variances

a <- c(40, 57, 45, 55, 58)
b <- c(57, 64, 55, 62, 65)
t.test(a, b, var.equal = TRUE)

## 
##     Two Sample t-test
## 
## data:  a and b
## t = -2.345, df = 8, p-value = 0.04705
## alternative hypothesis: true difference in means is not equal to
## 95 percent confidence interval:
##  -19.0405455  -0.1594545
## sample estimates:
## mean of x mean of y 
##      51.0      60.6

Permutation Tests
Consider the following hypothetical problem:

→ t
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Permutation Tests
A permutation test takes a different approach: If the two treatments are truly equivalent, the label (Treatment A or Treatment B)
assigned to an observed score is arbitrary.

1. Calculate the observed t-statistic, as in the parametric approach; call this t0.

2. Place all 10 scores in a single group.

3. Randomly assign five scores to Treatment A and five scores to Treatment B.

4. Calculate and record the new observed t-statistic.

5. Repeat steps 3–4 for every possible way of assigning five scores to Treatment A and five scores to Treatment B. There are 252
such possible arrangements.

6. Arrange the 252 t-statistics in ascending order. This is the empirical distribution, based on (or conditioned on) the sample
data.

7. If t0 falls outside the middle 95 percent of the empirical distribution, reject the null hypothesis that the population means for
the two treatment groups are equal at the 0.05 level of significance.
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Permutation Tests
In both the permutation and the parametric approach, the exact same -statistic is calculated.

In the permutation approach, however, the statistic is compared not to a theoretical distribution (e.g. an assumed normal
distribution) but to an empirical distribution created from permutations of the observed data.

If this empirical distribution contains all possible permutations of the data, the permutation test is called an 'exact' test.

If there are too many possible permutations to compute the test statistic in appropriate time, we ca use (Monte Carlo)
simulations.

t
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Permutation Tests
In R, we can use the coin package to run permutation tests as alternatives for a number of tests.

library(coin)

## Loading required package: survival

E.g.

df <- data.frame(value = c(a, b), treatment = c(rep("A", 5), rep("B", 5)))
oneway_test(value ~ treatment, data = df)

## 
##     Asymptotic Two-Sample Fisher-Pitman Permutation Test
## 
## data:  value by treatment (A, B)
## Z = -1.9147, p-value = 0.05553
## alternative hypothesis: true mu is not equal to 0

See here, for example.
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(Non)parametric Correlation Measures
Parametric: Pearson's 

Non-parametric:

Spearman rank correlation : i.e., the Pearson correlation coefficient between the
ranked variables

Kendall's : similar to Spearman's ; measures ordinal association between two
measured quantities

The argumentations for using non-parametric or parametric correlation measures are very similar to the ones for using
non_parametric or parametric test statistics.

Things to consider are: level of measurement, assumptions about the distribution, assumptions about a linear or non-linear
relationship, etc.

ρ

ρ

τ ρ
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(Non)parametric Correlation Measures
Pearson's 
Linear relation between PCT__WOMEN_ON_BOARD and EQY_BETA?

cor(data$PCT_WOMEN_ON_BOARD, data$EQY_BETA, use="complete.obs")

## [1] -0.08745765

For confidence intervals and a significance test, use cor.test().

ρ
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(Non)parametric Correlation Measures
Spearman rank correlation
cor(data$PCT_WOMEN_ON_BOARD, data$EQY_BETA, use="complete.obs", method="spearman")

## [1] -0.08065364

Kendall's 
cor(data$PCT_WOMEN_ON_BOARD, data$EQY_BETA, use="complete.obs", method="kendall")

## [1] -0.05475672

See here (Wikipedia) for comparisons between Spearman and Pearson correlations.

τ
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https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient


Your turnYour turn
Load the data in Load the data in sp500_data.csvsp500_data.csv again again

Think about interesting questions and formulate hypotheses you could test with theseThink about interesting questions and formulate hypotheses you could test with these
datadata

Test your hypothesis(-es) using appropriate testsTest your hypothesis(-es) using appropriate tests

Can you reject the Can you reject the ??

How do you interpret your results?How do you interpret your results?

Comment on upcoming issues regarding the statistical power, multiple hyptheses,Comment on upcoming issues regarding the statistical power, multiple hyptheses,
normality assumptions, etc.normality assumptions, etc.

HH00
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