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Time Series Analysis
Time Series Processes

A time series  is an ordered set of (random) variables, where the (time) ordering is important.

Data obtained from observations collected sequentially over time.

Notation: Observations , at time .

Goals: Explanation (understand or model the stochastic mechanism underlying the series) and Prediction (Forecast future values)

{yt}

yt t = 1, . . . ,T

3 / 46



Time Series Analysis
Univariate and Multivariate Time Series Analysis

time series analysis accounts for the fact that data points taken over time may have an internal structure that could be
utilized to draw conclusions about the series’ movements and to make predictions about its future path

the aim of time series analysis is to find an appropriate statistical model for the data and to use this model for prediction: in
this way, the variables are allowed to speak for themselves, without the "confines" of economic theory

univariate time series models are a class of specifications to model and predict variables using only information contained
in their own past values (and possibly current and past values of an error term)

structural models, on the other hand, are multivariate in nature, and attempt to explain changes in a variable by reference
to the movements in the current or past values of other (explanatory) variables (e.g., vector auto-regressive models, VAR)

 time series analyses can be applied to get knowledge about the underlying data generating process, to estimate inherent
patterns like trends, seasonality, or cyclical components, and to test economic hypotheses
→
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Time Series Analysis

5 / 46



Time Series Analysis
Time Series Operators

the  difference operator is defined by

Examples:

first difference operator: 

second difference operator: 

Seasonal differencing, e.g.: 

In R: diff()

ith

Δiyt = yt − yt−i

Δyt = yt − yt−1

Δyt = yt − yt−2

Δyt = yt − yt−12
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Time Series Analysis
Time Series Operators

the lag operator is defined as

more generally: 

thus, 

In R: lag()

Lyt = yt−1

Lkyt = yt−k

yt + α1yt−1 + α2yt−2 = (1 + α1L + α2L
2)yt
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Time Series Analysis
Mean and Variance of Time Series

time series may have both stochastic and deterministic components, e.g., a series with
a deterministic trend and a stochastic white noise component:

most time series models of financial markets will have a stochastic component, and so
the unconditional expectation and variance of the  observation on the time series
can be calculated; for example in the model above

yt = α + βt + εt where εt ∼ i. i. d(0,σ2)

tth

μyt = E[yt] = E[α + βt + εt] = α + βt

λ0 = V ar[yt] = E[(yt − E[yt])
2] = E[(α + βt + εt − α + βt)2] = E[ε2

t ] = σ2
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Time Series Analysis
Autocovariance and Autocorrelation of Time Series

the -order autocovariance of some time series , i.e., the unconditional
covariance of  and  (that is, the unconditional covariance at lag s is

for instance, for the series above, the -order autocovariance is

the autocorrelation function is then defined by

sth {yt}

yt yt−s

λs = Cov[yt, yt−s] = E[(yt − E[yt])(yt−s − E[yt−s])]

sth

λs = Cov[yt, yt−s] = E[(α + βt + εt − α + βt)(α + βt + εt−s − α + βt)]

= E[εtεt−s] = 0

ρs = Corr[yt, yt−s] =
λs

λ0
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Time Series Analysis
Autocovariance and Autocorrelation of Time Series

the partial autocorrelation function between  and  is is the correlation between 
 minus the part explained by intervening lags and  (where  is the minimum

mean-squared error prediction of  by )

thus, the partial autocorrelation gives the partial correlation of a time series eith its own
lagged values, controlling for intervening effects of values at shorter lags

yt yt−s

yt yt−s E∗

yt yt−1, . . . , yt−s+1

ρ∗
s = Corr[yt − E∗[yt|yt−1, . . . , yt−s+1], yt−s]
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Time Series Analysis
Returns in Financial Analysis and Modeling

Starting point is often prices, however, most often it is preferable to work with returns, i.e., prices have to be converted to
returns

Arithmetic and logarithmic returns
let  denote the price at time ; the simple "arithmetic" return  and the continuously compounded logarithmic return  are
then defined by

arithmetic returns are not symmetric: e.g. an increase by 50% and a decrease by 50% lead to a total change of -25%

log returns (continuously compounded returns) are time-additive but not additive across portfolios

pt t Rt rt

Rt = rt = ln( )pt−pt−1

pt−1

pt
pt−1
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Stationarity
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Stationarity
Weak Stationarity

A time series process  is said to be covariance stationary or weakly stationary of the following
requirements are satisfied:

1. 
2. 
3. 

That is, a time series process is weakly stationary if 

the mean is constant (independent of ),

the variance is a finite, positive constant, independent of , and

the auto-covariance is a finite function of the lag , but not of the absolute location of either observation on the time scale

{yt}

E[yt] = μ

V ar[yt] = λ2
0 < ∞

Cov[yt, yt−s] = λt,t−s∀t, t − s

. . .

t

t

s
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Stationarity
Strong Stationarity

A time series process  is said to be strictly stationary or strongly stationary if the joint
probability distribution of any set of  observations in the sequence  is the same
regardless of the origin  in the time scale.

That is, a time series process is said to be strongly stationary if the joint probability distribution does not change when shifted in
time, i.e., if for any , any , and , 

I.e., a series ({y_t}) is strictly stationary if the distribution of its values remains the same is time progresses, implying that the
probability that (y) falls within a particular interval is the same now as at any time in the past or future.

{yt}

k {yt, yt+1, . . . , yt+k}

t

t1, t2, . . . , tT ∈ Z k ∈ Z T = 1, 2, . . . ,T . . .

Fyt1 ,yt2 ,...,ytT
(y1, . . . , yT ) = Fyt1+k

,yt2+k
,...,ytT+k

(y1, . . . , yT )
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Stationarity
Financial Time Series
In applications of time series analysis to financial markets, return data and price data have
to be treated differently as we have to distinguish between stationary and non-stationary
time series:

returns are mainly stationary (mean-reverting, little autocorrelation)

prices are mainly non-stationary (time-trending, autocorrelation)

Note that some concepts – in terms of financial economics – such as, for instance, the volatility of time series or the correlation
between two different processes, which apply to stationary processes, do not apply to non-stationary processes.
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Stationarity
Example: Download stock price data
library(tidyverse)
library(tidyquant)

apple <- tq_get("AAPL")    # download Apple Inc. (AAPL) prices

Stata:

getsymbols command (install using ssc install getsymbols)
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Stationarity
Example: Apple Inc. stock price — a non-stationary time series
plot(zoo(apple$adjusted, apple$date))
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Stationarity
Example: Apple Inc. stock return — a stationary time series
apple <- apple %>% tq_mutate(select = adjusted, mutate_fun = periodReturn,
                             period = "daily", type = "log")
plot(zoo(apple$daily.returns, apple$date))
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Stationarity
Mean Reversion

stationary series exhibit a well-know property referred to as mean-reversion: due to its
finite variance, a stationary process can never drift too far from its mean

the speed of mean reversion is determined by the autocovariance: mean reversion is
quick when autocovariances are small and slow when autocovariances are large

in finance, mean reversion refers to the assumption that security prices tend to move
towards the average price over time: assets seem to be attractive to buy when the
current price is below the average price and vice versa

in this sense, mean reversion is opposed by the empirically observed tendency for rising
asset prices to rise further and falling prices to keep falling (momentum)
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Stationarity
Stationarity vs. Non-Stationarity

any series with a trend in the mean will not be stationary: when prices appear to be
trending, this is normally due to a stochastic rather than a deterministic trend

while prices (or log prices) in most markets are non-stationary, the first difference in
prices – or, more usually, the first difference in log prices (as these are approx. equal
to returns) – are modeled as a stationary process
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Stationarity
Integrated Processes

Let  be a non-stationary process such that  is stationary but  is non-stationary.
Then  is called integrated of order , denoted .

Example:

consider the time series process  where  (referred to as
random walk with drift); taking first difference of  yields , i.e.,
the white noise error term which is stationary

i.e., a random walk is non-stationary but becomes stationary when taking the first
difference; thus, a random walk is an integrated process of order 1, denoted 

{yt} Δd{yt} Δd−1{yt}

{yt} d yt ∼ I(d)

yt = μ + yt−1 + ut ut ∼ WN(0,σ2)

yt Δyt = yt − yt−1 = μ + ut

I(1)
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Stationarity
Tests for Stationarity: unit root tests
A number of different statistical tests are available to test whether a time series is
stationary or non-stationary: (augmented) Dickey-Fuller (GLS) test, Phillips-Perron test, KPPS
test, etc.

: the (time series) process has a unit root, i.e., is non-stationary

: depending on test, usually stationarity or trend-stationarity of the time series

H0

H1
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Stationarity
Tests for Stationarity: unit root tests
library(tseries)
adf.test(apple$adjusted)

## 
##     Augmented Dickey-Fuller Test
## 
## data:  apple$adjusted
## Dickey-Fuller = -1.2799, Lag order = 14, p-value = 0.8832
## alternative hypothesis: stationary

pp.test(apple$adjusted)

## 
##     Phillips-Perron Unit Root Test
## 
## data:  apple$adjusted
## Dickey-Fuller Z(alpha) = -4.2365, Truncation lag parameter = 9,
## p-value = 0.8734
## alternative hypothesis: stationary
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Stationarity
Tests for Stationarity: unit root tests
adf.test(apple$daily.returns)

## 
##     Augmented Dickey-Fuller Test
## 
## data:  apple$daily.returns
## Dickey-Fuller = -13.693, Lag order = 14, p-value = 0.01
## alternative hypothesis: stationary

adf.test(diff(log(apple$adjusted)))

## 
##     Augmented Dickey-Fuller Test
## 
## data:  diff(log(apple$adjusted))
## Dickey-Fuller = -13.669, Lag order = 14, p-value = 0.01
## alternative hypothesis: stationary
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Stationarity
Detrending Financial Time Series

since a trending time series is typically non-stationary, we would like to remove trends
in order to make it a stationary time series (referred to as detrending)

importantly, trends might either be deterministic or stochastic in nature

to remove a deterministic trend... ... compute deviations from a fitted line

to remove a stochastic trend... ... integrate the process, i.e., take differences
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plot(apple$date, apple$adjusted, type="l")
abline(lm(adjusted ~ date, data = apple), col=2)

#
#

Stationarity
Detrending Financial Time Series

apple$trend <- predict(lm(adjusted ~ date, data = apple)
apple$deviation <- apple$adjusted - apple$trend
plot(apple$date, apple$daily.returns, type = "l", col = 
lines(apple$date, apple$deviation/400, col = 2)
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Autoregressive and Moving Average Models
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Autoregressive Processes, AR(p)
let  be a white noise process with  and , then an autoregressive
model of order , denoted as , is defined as

i.e., an autoregressive model is a process where the current value of  depends only on
the value of  in previous periods plus an error term

ut E[ut] = 0 V ar[ut] = σ2

p AR(p)

yt = α0 + α1yt−1+. . . +αpyt−p + ut

y

y
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Autoregressive Processes, AR(p)
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Autoregressive Processes, AR(p)
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Moving Average Processes, MA(q)
let  be a white noise process with  and , then a  order moving
average processes, denoted as , is defined by

i.e., a moving average model is simply a linear combination of white noise processes,
such that  depends on the current and previous values of a white noise disturbance
term

ut E[ut] = 0 V ar[ut] = σ2 qth

MA(q)

yt = μ + ut + θ1ut−1 + θ2ut−1+. . . +θqut−q

yt
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Moving Average Processes, MA(q)
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Moving Average Processes, MA(q)
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Autoregressive Moving Average Models (ARMA)
autoregressive moving average models (ARMA) provide a parsimonious description of a
weakly stationary stochastic process in terms of two polynomials, one for the
autoregression and one for the moving average

i.e., combining an AR(p) and a MA(q) model results in the ARMA(p,q) model

Note: if the data shows evidence of non-stationarity, the ARIMA generalization (autoregressive integrated moving average
models) might be applied in order to eliminate non-stationarity by an initial differencing step

yt = α0 + α1yt−1+. . . +αpyt−q + ut + θ1ut−1+. . . +θqut−q
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Autoregressive Moving Average Models (ARMA)
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Model Identi�cation
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Model Identi�cation
the most crucial step in time series analysis is to identify and build a model based on the
available data — i.e., to identify a process which best explains the observed movements
over time

the aim is to identify a process that leaves the residuals not being different from a white
noise process (i.e., no exploitable information is contained in residuals)

in order to statistically examine whether a process is significantly different from white
noise, several tests are available (e.g., portmanteau Q test, Bartlett’s test, Box-Pierce test,
or Ljung-Box test)
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Model Identi�cation
Box-Jenkins Approach for Modelling Stochastic Processes
1. stationarity, model specification: check whether the series is stationary, determine the
order  of the model, apply graphical methods and (partial) autocorrelation function

2. estimation: estimate the parameters using non-linear least squares or maximum
likelihood (ordinary least squares will be biased and/or inefficient)

3. diagnosis, model quality: examine residuals and check the model quality (information
criteria)

Aim: establish a model as parsimonious as possible because the variance of the estimates is inverse proportional to the number
of degrees of freedom, i.e., parameters in the model to be estimated

(p, q)
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Model Identi�cation
ACF and PACF

process autocorrelation partial autocorrelation 

number of 's sig. different from zero
determines order of MA process

decreasing

decreasing
number of 's sig. different from zero
determines order of AR process

decreasing decreasing

ρ ρ∗

MA(q)
ρ

AR(p)
ρ∗

ARMA(p, q)
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Model Identi�cation
Information Criteria

generally, information criteria can be considered as goodness of fit measures: thus, information criteria are estimators of the
relative quality of statistical models for a given set of data, providing a means for model selection

information criteria estimate the relative information lost when a given model is used to represent the process generating
the data (trade-off between simplicity and goodness-of-fit of the model)

the smaller the estimator of an information criteria, the smaller the information loss and, thus, the better the particular
model is relative to other models which are compared

frequently applied information criteria are:
the Akaike information criteria (AIC),
the Bayesian information criteria (BIC), and
the Hannan-Quinn information criteria (HQIC)
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Model Identi�cation
Example
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Model Identi�cation
Example
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Model Identi�cation
Example

test for stationarity:

augmented Dickey-Fuller test: 

model selection:

choose suitable models based on (partial) autocorrelation function
reasonable candidates seem to be , , and 

z(t) = −5.4346, p = 0.01

AR(1) MA(1) ARMA(1, 1)
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Model Identi�cation
Example

model estimation:

arima(series, order = c(1, 0, 0))

## 
## Call:
## arima(x = series, order = c(1, 0, 0))
## 
## Coefficients:
##          ar1  intercept
##       0.7774     0.4637
## s.e.  0.0360     0.2761
## 
## sigma^2 estimated as 1.16:  log likelihood = -448.36,  aic = 902.72

arima(series, order = c(0, 0, 1))

## 
## Call:
## arima(x = series, order = c(0, 0, 1))
## 
## Coefficients:
##          ma1  intercept
##       0.7719     0.4497
## s.e.  0.0322     0.1214
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Model Identi�cation
library(forecast)

## Registered S3 methods overwritten by 'forecast':
##   method             from    
##   fitted.fracdiff    fracdiff
##   residuals.fracdiff fracdiff

auto.arima(series, trace = TRUE)

## 
##  Fitting models using approximations to speed things up...
## 
##  ARIMA(2,1,2) with drift         : 900.2311
##  ARIMA(0,1,0) with drift         : 932.2426
##  ARIMA(1,1,0) with drift         : 931.5384
##  ARIMA(0,1,1) with drift         : 928.1396
##  ARIMA(0,1,0)                    : 930.2166
##  ARIMA(1,1,2) with drift         : 888.4378
##  ARIMA(0,1,2) with drift         : 913.231
##  ARIMA(1,1,1) with drift         : 925.2665
##  ARIMA(1,1,3) with drift         : 890.4646
##  ARIMA(0,1,3) with drift         : 906.2779
##  ARIMA(2,1,1) with drift         : 903.8821
##  ARIMA(2,1,3) with drift         : 895.117
##  ARIMA(1,1,2)                    : 887.228
##  ARIMA(0,1,2)                    : 911.1791
##  ARIMA(1,1,1)                    : 923.2353
##  ARIMA(2,1,2)                    : 898.3981
##  ARIMA(1,1,3)                    : 889.2575
##  ARIMA(0,1,1)                    : 926.1011 45 / 46
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